

 Navigation

 	
 index

 	
 next |

 	pyoauth 0.0.1 documentation

PyOAuth

A Python library that implements the OAuth protocol for clients and servers.

Getting the library

$ pip install pyoauth

or

$ git clone git://github.com/gorakhargosh/pyoauth.git

or

$ git clone http://code.google.com/p/pyoauth/

$ cd pyoauth
$ python setup.py install

About the implementation

PyOAuth implements versions 1.0 and 2.0 of the OAuth protocol as per the RFC
specifications (See RFC5849 [http://tools.ietf.org/html/rfc5849]), which supersede any previous versions of the
protocol.

Client classes do not send HTTP requests but implement enough of the
OAuth protocol to help you build request proxies that can be used to send actual
HTTP requests. In essence, it implements OAuth and nothing else.
This is a very conscious decision by the library authors. It allows
framework authors and API users to use the library without pulling in
unnecessary dependencies which may not work on their platform of choice.
For example, you can use any of httplib2 [http://code.google.com/p/httplib2/], tornado [http://www.tornadoweb.org/], webapp2 [http://code.google.com/p/webapp-improved/], or django [http://djangoproject.com/] to
send HTTP requests built with this library.

Wherever possible the implementation tries to warn you about problems you may
encounter when processing or building OAuth requests by using a fail-fast
approach—we try to tell you as much about the problem as possible. For
example, OAuth relies on the availability of SSL to communicate securely, and
therefore, the library checks whether the OAuth endpoint URLs you specify
use SSL and prohibits you from using them if they do not begin with
https://. You can change this behavior to suit your needs, but the library
will warn you.

Custom HTTP methods [http://tools.ietf.org/html/rfc5849#section-3.4.1.1] are currently not supported.

Signature methods

All the signature methods recommended by the OAuth specification have been
implemented by this library, namely:

	PLAINTEXT

	HMAC-SHA1

	RSA-SHA1

Custom signature methods are currently not supported.

RSA-SHA1 requirements

The RSA-SHA1 signature method relies on the availability of third-party
libraries like pyasn1 [http://pypi.python.org/pypi/pyasn1], and PyCrypto [http://pycrypto.org/] or M2Crypto [http://chandlerproject.org/Projects/MeTooCrypto].

The library accepts PEM-encoded X.509 certificates, RSA public keys, and RSA
private keys. The validity of the X.509 certificates will not be verified by
the signing functions. You must ensure the validity of certificates when you
accept them by using other utility methods provided by this library or any
other suitable means. It is also a good idea to periodically remind your
clients about their certificate expiration dates—human beings forget after all.

For a quick rundown about these certificates and keys, please read
Using RSA-SHA1 signatures.

User Guides

	A typical OAuth 1.0 flow in simple words
	Accessing a resource

	Using RSA-SHA1 signatures
	Whoa?!

	Why should you use public-key encryption?

	What does a key look like?

	Making your own key-pair

	Contributing
	Important URLs

	OAuth Test server information for testing clients

	Before you start

	Setting up the Work Environment

	Enabling Continuous Integration

API Documentation

	Client implementations
	pyoauth.oauth1.protocol

	pyoauth.oauth1.client

	pyoauth.oauth1.client.google

	OAuth 1.0-specific utilities
	pyoauth.oauth1

	Utilities
	pyoauth.url

	pyoauth.http

Contribute

Found a bug in or want a feature added to pyoauth?
You can fork the official code repository [http://github.com/gorakhargosh/pyoauth] or file an issue ticket
at the issue tracker [http://github.com/gorakhargosh/pyoauth/issues]. You may also want to refer to Contributing for
information about contributing code or documentation to pyoauth.

	Contributing
	Important URLs

	OAuth Test server information for testing clients

	Before you start

	Setting up the Work Environment

	Enabling Continuous Integration

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2012, Google, Inc..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	pyoauth 0.0.1 documentation

A typical OAuth 1.0 flow in simple words

	Construct a client with its client credentials.

	Send an HTTPS request for temporary credentials with a callback URL
which the server will call with an OAuth verification code after
authorizing the resource owner (end-user).

	Obtain temporary credentials from a successful server response.

	Use the temporary credentials to build an authorization URL and
redirect the resource owner (end-user) to the generated URL.

	If a callback URL is not provided when requesting temporary credentials,
the server displays the OAuth verification code to the resource owner
(end-user), which she then types into your application.

OR

If a callback URL is provided, the server redirects the resource owner
(end-user) after authorization to your callback URL attaching the
OAuth verification code as a query parameter.

	Using the obtained OAuth verification code from step 5 and the
temporary credentials obtained in step 3, send an HTTPS request for
token credentials.

	Obtain token credentials from a successful server response.

	Save the token credentials for future use (say, in a database).

Accessing a resource

	Construct a client with its client credentials.

	Using the token credentials that you have saved (say, in a database),
send an HTTP request to a resource URL.

	Obtain the response and deal with it.

 Copyright 2012, Google, Inc..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	pyoauth 0.0.1 documentation

Using RSA-SHA1 signatures

-----BEGIN RSA PRIVATE KEY-----
MIICdgIBADANBgkqhkiG9w0BAQEFAASCAmAwggJcAgEAAoGBALRiMLAh9iimur8V
A7qVvdqxevEuUkW4K+2KdMXmnQbG9Aa7k7eBjK1S+0LYmVjPKlJGNXHDGuy5Fw/d
7rjVJ0BLB+ubPK8iA/Tw3hLQgXMRRGRXXCn8ikfuQfjUS1uZSatdLB81mydBETlJ
hI6GH4twrbDJCR2Bwy/XWXgqgGRzAgMBAAECgYBYWVtleUzavkbrPjy0T5FMou8H
X9u2AC2ry8vD/l7cqedtwMPp9k7TubgNFo+NGvKsl2ynyprOZR1xjQ7WgrgVB+mm
uScOM/5HVceFuGRDhYTCObE+y1kxRloNYXnx3ei1zbeYLPCHdhxRYW7T0qcynNmw
rn05/KO2RLjgQNalsQJBANeA3Q4Nugqy4QBUCEC09SqylT2K9FrrItqL2QKc9v0Z
zO2uwllCbg0dwpVuYPYXYvikNHHg+aCWF+VXsb9rpPsCQQDWR9TT4ORdzoj+Nccn
qkMsDmzt0EfNaAOwHOmVJ2RVBspPcxt5iN4HI7HNeG6U5YsFBb+/GZbgfBT3kpNG
WPTpAkBI+gFhjfJvRw38n3g/+UeAkwMI2TJQS4n8+hid0uus3/zOjDySH3XHCUno
cn1xOJAyZODBo47E+67R4jV1/gzbAkEAklJaspRPXP877NssM5nAZMU0/O/NGCZ+
3jPgDUno6WbJn5cqm8MqWhW1xGkImgRk+fkDBquiq4gPiT898jusgQJAd5Zrr6Q8
AO/0isr/3aa6O6NLQxISLKcPDk2NOccAfS/xOtfOz4sJYM3+Bs4Io9+dZGSDCA54
Lw03eHTNQghS0A==
-----END RSA PRIVATE KEY-----

-----BEGIN PUBLIC KEY-----
 MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQC0YjCwIfYoprq/FQO6lb3asXrx
 LlJFuCvtinTF5p0GxvQGu5O3gYytUvtC2JlYzypSRjVxwxrsuRcP3e641SdASwfr
 mzyvIgP08N4S0IFzEURkV1wp/IpH7kH41EtbmUmrXSwfNZsnQRE5SYSOhh+LcK2w
 yQkdgcMv11l4KoBkcwIDAQAB
 -----END PUBLIC KEY-----

-----BEGIN CERTIFICATE-----
MIIBpjCCAQ+gAwIBAgIBATANBgkqhkiG9w0BAQUFADAZMRcwFQYDVQQDDA5UZXN0
IFByaW5jaXBhbDAeFw03MDAxMDEwODAwMDBaFw0zODEyMzEwODAwMDBaMBkxFzAV
BgNVBAMMDlRlc3QgUHJpbmNpcGFsMIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKB
gQC0YjCwIfYoprq/FQO6lb3asXrxLlJFuCvtinTF5p0GxvQGu5O3gYytUvtC2JlY
zypSRjVxwxrsuRcP3e641SdASwfrmzyvIgP08N4S0IFzEURkV1wp/IpH7kH41Etb
mUmrXSwfNZsnQRE5SYSOhh+LcK2wyQkdgcMv11l4KoBkcwIDAQABMA0GCSqGSIb3
DQEBBQUAA4GBAGZLPEuJ5SiJ2ryq+CmEGOXfvlTtEL2nuGtr9PewxkgnOjZpUy+d
4TvuXJbNQc8f4AMWL/tO9w0Fk80rWKp9ea8/df4qMq5qlFWlx6yOLQxumNOmECKb
WpkUQDIDJEoFUzKMVuJf4KO/FJ345+BNLGgbJ6WujreoM1X/gYfdnJ/J
-----END CERTIFICATE-----

Whoa?!

Betchyoo weren’t expecting that. Ha!

“What’s up with all that gibberish up there, man?” you ask.

 / \
| |
| Yeah, dude. I mean, up there! -^ |
| |
 ____________________________________/
 V
 You. =O

That, my friend, is three friends. Wait, my grammar has left with the wind.

“Three friends, huh?”

Yep, three friends. They keep your privates private and your publics... err,
they’re not really worried about your publics.

“Do these friends have names, man?”

Yeah. They’re:

	RSA private key

	RSA public key

	X.509 certificate

They’re a happy couple.

“One. Two. Three. Hmm. Oye, that’s 3 of them. Couple? So, umm... how do they
work? Somethin’ to do with opensll yeah?”

We’ll get to this in a bit. Kinda, yes, and that’s “OpenSSL,” by the way.

Why should you use public-key encryption?

Because it’s harder.

No, I mean it’s harder for you to work with. And it also allows attackers
to snoop into everything you’re saying after they’re long dead and gone.

Consider a series of love letters Mr. Bunny sends to Mrs. Bunny. But the
postman, Mr. Evil Fox, however, is a very cunning fox. He doesn’t like
Mr. Bunny, so he opens all of Mr. Bunny’s letters and changes a few words before
delivering them to trick Mrs. Bunny into thinking that Mr. Bunny is cheating
on her.

What Mr. Bunny sends:

+++
| |
| Dear Mrs. Bunny, |
| |
| I love you. |
| |
| Love, Mr. Bunny |
| |
+++

What Mrs. Bunny receives:

+++
| |
| Dear Mrs. Hippopotamus, |
| |
| I love you. |
| |
| Love, Mr. Bunny |
| |
+++

All thanks to Mr. Evil Fox.

 / \
| |
| Grrrrrrrr. >=|B |
| |
 ____________________________________/
 V
 Mrs. Bunny

Mrs. Bunny is furious and scolds Mr. Bunny about all the letters Mr. Bunny
never sent! Mr. Bunny is perplexed and rubs Aladdin’s lamp to ask the genie
for a magical lock.

A magical lock with two keys: one to lock it and the other to open it.

He gives the second key to Mrs. Bunny and only she can now open the envelopes
that Mr. Bunny sends to her. Poor Mr. Evil Fox tries his best to open
Mr. Bunny’s letters, but can’t anymore. Hooray!

What Mr. Bunny sends:

+++
| |
| Dear Mrs. Bunny, |
| |
| I love you. Hooray! |
| |
| Love, Mr. Bunny |
| |
+++

What Mrs. Bunny now receives:

+++
| |
| Dear Mrs. Bunny, |
| |
| I love you. Hooray! |
| |
| Love, Mr. Bunny |
| |
+++

Mr. Fox -> ='(
Mr. and Mrs. Bunny -> =B and =B

Imagine public-key encryption to be the equivalent of having a lock with two
complementary keys—that is, if you lock something with one key, only the
other key can open it. So, RSA public-key encryption uses the notion of these
two keys to secure your messages in a way that:

	Ensures the messages that A and B exchange are confidential.

	Ensures the message that B receives from A were actually sent by A
and vice versa.

	Ensures the messages that A and B exchange aren’t tampered with while
in transit.

Now, using RSA-SHA-1 signatures shouldn’t be as difficult to use as they are
with OAuth. Therefore, we have tried to take the burden of implementing them
away from you and made it as easy as possible for you to use this signature
method.

So how does OAuth use public-key encryption?

OAuth requires the use of SSL by clients when requesting token secrets
from OAuth servers. Verifying the authenticity of the messages is handled
by RSA-SHA-1 signatures.

Here is what you have to do to use your RSA key-pair with OAuth:

	You share your public key (an RSA public key or an X.509 public-key
certificate) with the OAuth provider.

	Sign your messages with your RSA private key (which you keep safe and don’t
share with anybody else including the OAuth provider) by telling the
request building methods to use "RSA-SHA1" as the signature
method and your RSA private key as the client secret. Easy, huh?

The OAuth provider can now use your public key to verify the messages that
you send to it after you sign them with your private key.

That’s essentially it.

What does a key look like?

A key can come in multiple formats. The PEM [http://en.wikipedia.org/wiki/Privacy_Enhanced_Mail], or Privacy Enhanced
electronic-Mail, format is a commonly accepted format, and that is the one
preferred by this library. Keys can be also stored in JSON formats as the one
used by the Keyczar [http://www.keyczar.org/] library. Have a look at the
Keyczar RSA private key format [http://code.google.com/p/keyczar/wiki/RsaPrivateKey]. Public keys that you generate are
generally encoded into something called an X.509 public-key certificate.
You can share either an RSA public key or an X.509 public-key certificate
with your OAuth provider. Providers usually ask for an X.509 public-key
certificate.

RSA Private Key

An example:

-----BEGIN RSA PRIVATE KEY-----
MIICdgIBADANBgkqhkiG9w0BAQEFAASCAmAwggJcAgEAAoGBALRiMLAh9iimur8V
A7qVvdqxevEuUkW4K+2KdMXmnQbG9Aa7k7eBjK1S+0LYmVjPKlJGNXHDGuy5Fw/d
7rjVJ0BLB+ubPK8iA/Tw3hLQgXMRRGRXXCn8ikfuQfjUS1uZSatdLB81mydBETlJ
hI6GH4twrbDJCR2Bwy/XWXgqgGRzAgMBAAECgYBYWVtleUzavkbrPjy0T5FMou8H
X9u2AC2ry8vD/l7cqedtwMPp9k7TubgNFo+NGvKsl2ynyprOZR1xjQ7WgrgVB+mm
uScOM/5HVceFuGRDhYTCObE+y1kxRloNYXnx3ei1zbeYLPCHdhxRYW7T0qcynNmw
rn05/KO2RLjgQNalsQJBANeA3Q4Nugqy4QBUCEC09SqylT2K9FrrItqL2QKc9v0Z
zO2uwllCbg0dwpVuYPYXYvikNHHg+aCWF+VXsb9rpPsCQQDWR9TT4ORdzoj+Nccn
qkMsDmzt0EfNaAOwHOmVJ2RVBspPcxt5iN4HI7HNeG6U5YsFBb+/GZbgfBT3kpNG
WPTpAkBI+gFhjfJvRw38n3g/+UeAkwMI2TJQS4n8+hid0uus3/zOjDySH3XHCUno
cn1xOJAyZODBo47E+67R4jV1/gzbAkEAklJaspRPXP877NssM5nAZMU0/O/NGCZ+
3jPgDUno6WbJn5cqm8MqWhW1xGkImgRk+fkDBquiq4gPiT898jusgQJAd5Zrr6Q8
AO/0isr/3aa6O6NLQxISLKcPDk2NOccAfS/xOtfOz4sJYM3+Bs4Io9+dZGSDCA54
Lw03eHTNQghS0A==
-----END RSA PRIVATE KEY-----

RSA Public Key

An example:

-----BEGIN PUBLIC KEY-----
 MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQC0YjCwIfYoprq/FQO6lb3asXrx
 LlJFuCvtinTF5p0GxvQGu5O3gYytUvtC2JlYzypSRjVxwxrsuRcP3e641SdASwfr
 mzyvIgP08N4S0IFzEURkV1wp/IpH7kH41EtbmUmrXSwfNZsnQRE5SYSOhh+LcK2w
 yQkdgcMv11l4KoBkcwIDAQAB
 -----END PUBLIC KEY-----

X.509 Public-key Certificate

An example:

-----BEGIN CERTIFICATE-----
MIIBpjCCAQ+gAwIBAgIBATANBgkqhkiG9w0BAQUFADAZMRcwFQYDVQQDDA5UZXN0
IFByaW5jaXBhbDAeFw03MDAxMDEwODAwMDBaFw0zODEyMzEwODAwMDBaMBkxFzAV
BgNVBAMMDlRlc3QgUHJpbmNpcGFsMIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKB
gQC0YjCwIfYoprq/FQO6lb3asXrxLlJFuCvtinTF5p0GxvQGu5O3gYytUvtC2JlY
zypSRjVxwxrsuRcP3e641SdASwfrmzyvIgP08N4S0IFzEURkV1wp/IpH7kH41Etb
mUmrXSwfNZsnQRE5SYSOhh+LcK2wyQkdgcMv11l4KoBkcwIDAQABMA0GCSqGSIb3
DQEBBQUAA4GBAGZLPEuJ5SiJ2ryq+CmEGOXfvlTtEL2nuGtr9PewxkgnOjZpUy+d
4TvuXJbNQc8f4AMWL/tO9w0Fk80rWKp9ea8/df4qMq5qlFWlx6yOLQxumNOmECKb
WpkUQDIDJEoFUzKMVuJf4KO/FJ345+BNLGgbJ6WujreoM1X/gYfdnJ/J
-----END CERTIFICATE-----

Making your own key-pair

“Alright. I get it Sherlock. Now, how do I make my pair of keys
to use with an OAuth provider?”

You can generate your own self-signed X.509 certificate and private RSA key
using the tools OpenSSL provides. You’ll need OpenSSL [http://www.openssl.org/] installed for the
following command to work at the terminal:

$ openssl req -x509 -nodes -days 365 -newkey rsa:1024 -sha1 -keyout \
 rsa_private_key.pem -out x509_public_certificate.pem

Answer all the questions that the tool asks and you should be good to go.
For more detailed information about generating X.509 public-key certificates,
read:

	http://www.ipsec-howto.org/x595.html

	http://www.imacat.idv.tw/tech/sslcerts.html#reqform

	http://code.google.com/apis/gdata/docs/auth/oauth.html#openssl

 Copyright 2012, Google, Inc..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	pyoauth 0.0.1 documentation

Contributing

Welcome hackeratti! So you have got something you would like to see in
pyoauth? Whee. This document will help you get started.

Important URLs

pyoauth uses git [http://git-scm.org/] to track code history and hosts its code repository [http://github.com/gorakhargosh/pyoauth]
at github [http://github.com/]. The issue tracker [http://github.com/gorakhargosh/pyoauth/issues] is where you can file bug reports and request
features or enhancements to pyoauth.

OAuth Test server information for testing clients

Sandbox URL: http://oauth-sandbox.sevengoslings.net/
Username: pyoauth
Password (Guard Kitten): Kitty-Agent "Able"

URLs

Request token URL: http://oauth-sandbox.sevengoslings.net/request_token
User authorization URL: http://oauth-sandbox.sevengoslings.net/authorize
Access token URL: http://oauth-sandbox.sevengoslings.net/access_token

Two-legged resource URL: http://oauth-sandbox.sevengoslings.net/two_legged
Three-legged resource URL: http://oauth-sandbox.sevengoslings.net/three_legged

Consumer keys:

Consumer key: ac19e45c6b01a767
Consumer secret: 59806917a29a94ee77190ec06c50

Nonce checking is enabled.

Before you start

Ensure your system has the following programs and libraries installed before
beginning to hack:

	Python [http://python.org]

	git [http://git-scm.org/]

	ssh

Setting up the Work Environment

pyoauth makes extensive use of zc.buildout [http://www.buildout.org/] to set up its work
environment. You should get familiar with it.

Steps to setting up a clean environment:

	Fork the code repository [http://github.com/gorakhargosh/pyoauth] into your github [http://github.com/] account. Let us call you
hackeratti. That is your name innit? Replace hackeratti
with your own username below if it isn’t.

	Clone your fork and setup your environment:

$ git clone --recursive git@github.com:hackeratti/pyoauth.git
$ cd pyoauth
$ python bootstrap.py --distribute
$ bin/buildout

Important

Re-run bin/buildout every time you make a change to the
buildout.cfg file.

That’s it with the setup. Now you’re ready to hack on pyoauth.

Enabling Continuous Integration

The repository checkout contains a script called autobuild.sh
which you should run prior to making changes. It will detect changes to
Python source code or restructuredText documentation files anywhere
in the directory tree and rebuild sphinx [http://sphinx.pocoo.org/] documentation, run all tests using
nose [http://somethingaboutorange.com/mrl/projects/nose/0.11.2/], and generate coverage [http://nedbatchelder.com/code/coverage/] reports.

Start it by issuing this command in the pyoauth directory
checked out earlier:

$ tools/autobuild.sh
...

Happy hacking!

 Copyright 2012, Google, Inc..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	pyoauth 0.0.1 documentation

Client implementations

pyoauth.oauth1.protocol

pyoauth.oauth1.client

pyoauth.oauth1.client.google

OAuth 1.0-specific utilities

pyoauth.oauth1

 Copyright 2012, Google, Inc..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	pyoauth 0.0.1 documentation

Utilities

pyoauth.url

pyoauth.http

 Copyright 2012, Google, Inc..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	pyoauth 0.0.1 documentation

Contributing

Welcome hackeratti! So you have got something you would like to see in
pyoauth? Whee. This document will help you get started.

Important URLs

pyoauth uses git [http://git-scm.org/] to track code history and hosts its code repository [http://github.com/gorakhargosh/pyoauth]
at github [http://github.com/]. The issue tracker [http://github.com/gorakhargosh/pyoauth/issues] is where you can file bug reports and request
features or enhancements to pyoauth.

OAuth Test server information for testing clients

Sandbox URL: http://oauth-sandbox.sevengoslings.net/
Username: pyoauth
Password (Guard Kitten): Kitty-Agent "Able"

URLs

Request token URL: http://oauth-sandbox.sevengoslings.net/request_token
User authorization URL: http://oauth-sandbox.sevengoslings.net/authorize
Access token URL: http://oauth-sandbox.sevengoslings.net/access_token

Two-legged resource URL: http://oauth-sandbox.sevengoslings.net/two_legged
Three-legged resource URL: http://oauth-sandbox.sevengoslings.net/three_legged

Consumer keys:

Consumer key: ac19e45c6b01a767
Consumer secret: 59806917a29a94ee77190ec06c50

Nonce checking is enabled.

Before you start

Ensure your system has the following programs and libraries installed before
beginning to hack:

	Python [http://python.org]

	git [http://git-scm.org/]

	ssh

Setting up the Work Environment

pyoauth makes extensive use of zc.buildout [http://www.buildout.org/] to set up its work
environment. You should get familiar with it.

Steps to setting up a clean environment:

	Fork the code repository [http://github.com/gorakhargosh/pyoauth] into your github [http://github.com/] account. Let us call you
hackeratti. That is your name innit? Replace hackeratti
with your own username below if it isn’t.

	Clone your fork and setup your environment:

$ git clone --recursive git@github.com:hackeratti/pyoauth.git
$ cd pyoauth
$ python bootstrap.py --distribute
$ bin/buildout

Important

Re-run bin/buildout every time you make a change to the
buildout.cfg file.

That’s it with the setup. Now you’re ready to hack on pyoauth.

Enabling Continuous Integration

The repository checkout contains a script called autobuild.sh
which you should run prior to making changes. It will detect changes to
Python source code or restructuredText documentation files anywhere
in the directory tree and rebuild sphinx [http://sphinx.pocoo.org/] documentation, run all tests using
nose [http://somethingaboutorange.com/mrl/projects/nose/0.11.2/], and generate coverage [http://nedbatchelder.com/code/coverage/] reports.

Start it by issuing this command in the pyoauth directory
checked out earlier:

$ tools/autobuild.sh
...

Happy hacking!

 Copyright 2012, Google, Inc..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	pyoauth 0.0.1 documentation

Index

 Copyright 2012, Google, Inc..
 Created using Sphinx 1.2.2.

 _static/up.png

_static/comment-bright.png

_static/down.png

_static/ajax-loader.gif

search.html

 Navigation

 		
 index

 		pyoauth 0.0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Google, Inc..
 Created using Sphinx 1.2.2.

_static/down-pressed.png

_static/comment-close.png

_static/up-pressed.png

_static/comment.png

_static/file.png

_static/minus.png

_static/plus.png

